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ABSTRACT

The term data fusion is a relatively new term to the condition monitoring community. In defence and
other applications the field is mature and has seen extensive application. A corresponding theoretical
advance has been made in methods and in frameworks for applications. The important advances in
terms of condition monitoring include:

•  the crystallisation of a cohesive scheme for problem definition;
•  structured solution selection;
•  comparisons with dissimilar application fields which have similar problem structures or

solution methods;
•  the blending of quantitative and qualitative methods which have produced encouraging results

for CM solutions but are limited when used in isolation.

This paper reviews existing architectures or frameworks, and proposes a new model for data fusion
strategy in condition monitoring. Examples are drawn from manufacturing and plant applications.
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INTRODUCTION

Definitions of data fusion have been proposed by several authors. Fusion is defined materially as a
process of blending, usually with the application of heat to melt constituents together (OED), but in
data processing the more abstract form of union or blending together is meant. The “heat” is applied
with a series of algorithms which, depending on the technique used, give a more or less abstract
relationship between the constituents and the finished output.

A “fused” definition, which fits many examples in engineering, identifies data fusion as the process of
combining data and knowledge from different sources with the aim of maximising the useful
information content, for improved reliability or discriminant capability, whilst minimising the
quantity of data ultimately retained.

Most data fusion users find that the field is wider than they thought. Llinas described data fusion as a
“cottage industry” [1]. The field is not simply about the core algorithms, but also about the way the
problem is formulated and the choice of methods. The range of applications is vast. Fusion users in
widely differing disciplines can shed light on structurally similar problems.

The sensor and signal processing communities have been using fusion to synthesise the results of two
or more sensors for some years. This simple step recognises the limitations of a single sensor but



exploits the capability of another similar or dissimilar sensor to calibrate, add dimensionality or
simply to increase statistical significance or robustness to cope with sensor uncertainty. In many such
applications the fusion process is necessary to gain sufficient detail in the required domain.

Crucially for condition monitoring, the encompassing philosophy of data fusion allows us to cross
some boundaries where recent applications have faltered:

•  it is possible to deal with the selection of data processing methods based on problem
characteristics, e.g. data or knowledge density; the relationships are becoming clearer;

•  we can merge qualitative and quantitative information, e.g. diagnostics data and expert
knowledge, in a probabilistic or possibilistic framework.

There are many problems to be overcome. A number of proposed frameworks exist, and each needs
work before it could be called generic. There is much to be learnt from existing methods for technique
selection, even if those are heuristic and empirical. Integrated approaches will involve multi-level
fusion – sensor data, novelty detection, feature classification, diagnosis and decision making.

STRUCTURES IN DATA FUSION

Several architectures, as structures are commonly called in the data fusion community, has been
proposed in the literature. The lay out of these architectures varies in relation to the field of
application. In 1984 the US Department of Defence established the Sub-Panel for Data Fusion Joint
Directors of Laboratories (JDL) in an effort to consolidate this analytical field among researchers. The
architecture developed by JDL [1] assumes a level distribution for the fusion process, characterising
the data from the source signal level to a refinement level, where the fusion of information takes place
in terms of data association, state estimation or object classification. Situation assessment could then
proceed, at a higher level of inference, to fuse the object representations provided by the refinement
and draw a course of action. Figure 1 depicts the general JDL model. Without loss of generality, it is
obvious that the JDL architecture can be adapted to accommodate the problem at hand.
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Figure 1:  JDL data fusion architecture.

The strategy to implement data fusion varies from one application to the next, but three stages can
commonly be identified. Depending on the problem, it is not always necessary to apply all the stages:

•  Pre-processing, i.e. reduction of the quantity of data whilst retaining useful information and
improving its quality, with minimal loss of detail. The pre-processing may include feature
extraction and sensor validation. Some of the techniques used include dimension reduction, gating
for association, thresholding, Fourier transform, averaging, and image processing.



•  Data alignment, where the techniques must fuse the results of multiple independent sensors, or
possibly features already extracted in pre-processing. These include association metrics, batch and
sequential estimation processes, grouping techniques, and model-based methods.

•  Post-processing, combining the mathematical data with knowledge, and decision making.
Techniques could be classified as knowledge-based, cognitive-based, heuristic, and statistical.

Figure 2 shows an overview of the aforementioned techniques, which characterise data fusion
applications, dividing the domain into three overlapping regions.

Many researchers have focused on specific methods applied to particular problems, or particular
aspects of the architecture. Examples include architectural issues dealing with the problem of multiple
sensors in similar or dissimilar domains [2-4]. Extended Kalman filtering [5], model based approaches
[6-8], wavelet decomposition [9], Artificial Neural Networks [10,11] and Fuzzy Logic [12]. The
National Physical Laboratory has provided a review of data fusion to the INTErSECT community
[13].

The fusion of data can take place at different levels of representation, namely:

•  Raw data fusion at the signal/pixel level, where the raw data is robustly and redundantly merged
or sensors are validated.

•  Feature fusion at the feature level, where a characteristic is extracted before fusion occurs.
•  Decision fusion at the symbol level, where measured data with or without pre-processing is

combined with processed data or a priori knowledge.
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Figure 2:  A method map in data fusion.



APPLICATIONS OF DATA FUSION

Practical applications of data fusion have necessarily been those areas in which the required output of
an analysis may not be measured directly. This is particularly important in medical imaging [6], non-
destructive testing [14] and remote sensing, such as target identification and tracking [3,8,10]. The
methods are particularly popular in Condition Monitoring, where the purpose is to detect faults and
the degradation of machine health [5,7,9,11,12,15,16].

Work at Manchester has pursued a number of methods under the data fusion umbrella. A variety of
novel measurement, advanced signal processing and feature extraction techniques are being used in
the detection, location, severity assessment and diagnosis of faults:

•  Modelling and parameter estimation have been used to analyse diesel fuel injectors, characterising
the measured data with wavelet transforms [17];

•  Three dimensional measurements are fused from stereoscopic image data for the measurement of
robot repeatability, using robust pixel interpolation with the Hough transform [18];

•  Gear faults are diagnosed and located using classical vibration analysis, cepstrum and wavelet
transforms [19];

•  Neural networks have been applied to a variety of applications including diesel cylinder pressure
reconstruction [20];

•  Linear and non-linear System Identification is extensively used in structural analysis for
aerospace applications [21];

•  Optimisation in control and aerospace applications have utilised parameter estimation, fuzzy
logic, neural networks and statistical methods [22-24].

This range of applications has led to a deep understanding of particular techniques but moreover a
comprehension of the differing architectures of problem solution configurations and their unique
characteristics.

A CONDITION MONITORING PERSPECTIVE

Data Fusion has rooted applications in the field of Condition monitoring due to the fact that large
amount of data should be processed if proper assessment of the machine’s health is to be ensured. The
inspection of the machine could be performed on-line, in a continuous fashion, or off-line, on a
scheduled basis. The data would then be processed in a sequential or in a batch manner, respectively.
The data arriving to the fusion centre contain vibration, temperature, pressure, oil analysis, and other
measurements that encapsulates the parametric properties of the system and can aid in its condition
assessment.

An important aspect of condition monitoring is the fidelity of information received by the sensor
units. The data acquired must be consistent and as much noise-free as possible. One should also be
concerned with sensor complementarity, rather than emphasising on sensor redundancy. These aspects
should be considered at the source level to alleviate the pre-processing of the information. On the
other hand, the sample cycle should be small enough to be contained within the time over which faults
in the machine develops, and input frequencies should be carefully selected to achieve the desired
monitoring capabilities.

After the data has been acquired at the source level, it passes through to the pre-processing unit for
digital conversion and proper manipulation. At this stage spectral analysis, correlation, image
processing, time averaging, thresholding, and dimension reduction techniques are implemented based
on the data at hand. The processed data is then pushed through to the fusion centre and routed
according to the level of fusion sought, i.e. raw data, feature, or decision level fusion. Thus, the data



will reach the data alignment stage or the post-processing stage accordingly. No single fusion
technique has been proposed, selection must be made depending upon the application. The
information available and the level of inference sought would clearly determine the “most likely to
work” method. Table 1 exemplifies some applications and some of the most commonly recommended
fusion methods. The fusion process could be applied considering a unique Condition monitoring
system, combining different sets of data, or considering several Condition monitoring systems,
combining different measurements.

For condition monitoring purposes, the output from the fusion centre should contain explicit
information that can lead towards the health assessment of the machine. A faulty/not-faulty type
signal, with a range of in-betweens, can certainly aid in the decision making of the plant supervisor.
This sort of information can be derived from the best estimate, based on decision logic, in the form of
a probability measure.

Fusion method Application
Best-fit functions, Kalman filter Combine signals to enhance information
Neural network Signal interpretation
Logical filters, Image algebra Image processing/segmentation
Markov random field, Simulated annealing Image processing
Extended Kalman, Gauss-Markov Feature extraction
Classical inference Decision making
Bayesian theory Decision making between hypotheses
Dempster-Shafer Decision making with belief intervals
Evidential reasoning Decision making with belief intervals
Fuzzy logic Handle vagueness
Expert systems Pattern recognition

Table 1. Data Fusion techniques and applications.

For the sake of illustration, consider two transducers strategically placed to acquire sensible vibration
information based on the health of a machine. Further, assume that only two hypotheses are
considered: Fault, H, and no-fault, HH −=1 . If a red/green light signal is required, the combination
process should be done based on previous knowledge: i.e. decision fusion must be called to do the
job. One of the most widely used techniques, at this level of fusion, is the Bayesian probabilistic
reasoning. This is preferred over other methods when a hard decision output is required. Of course,
other approaches could be chosen at this stage according to the type of uncertainty in the measurands
(e.g. possibility, plausibility, belief, vagueness). A mayor drawback of this approach is that large
amount of data would have to be processed in order to obtain the probability inputs. The Bayesian
reasoning searches for a-posteriori probability of a hypothesis based on the signal output, that is:
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where P(H) is the a-priori probability of the hypotheses H, which varies according to the technique
used and the machine being inspected (experience being the best guidance). P(S/H) is the conditional
probability of measuring a specific output signal S given hypotheses H is true (a fault is present). For
the case of two statistically independent sensors, Eq. (1) can be re-written as:



           
)/()/()()/()/()(

)/()/()(
)/(

2121

21
21 HSPHSPHPHSPHSPHP

HSPHSPHP
SSHP

+
=∩           Eq. (2)

where )/( 21 SSHP ∩  is the a-posteriori probability of occurrence for hypotheses H given the
combination of the signals, S1 and S2. The a-posteriori probability will have to be computed for the
two sensors: i.e. 121 )/( SSHP ∩  and 221 )/( SSHP ∩ . Decisions would be made based on the
highest support.

EXAMPLES

Example 1 Knowledge based decision fusion

In complex systems we make decisions based on measured parameters, but we relate those to
knowledge about the way the systems operates. In manufacturing systems, for example, operational
faults account for about 70% of failures. Rapid diagnosis is critical for improving the availability and
productivity of the manufacturing system.

Diagnosis of complex systems is challenging because there are many different faults, and training is
likely to be forgotten before it can be applied. Hierarchical diagnosis models, based on fault tree
analysis, logical control and sequential control can be built around the operation of the Programmable
Logical Controller (PLC). With these models working together, the operational faults of a
manufacturing system can be diagnosed completely. The models have been successfully applied to a
PLC controlled flexible manufacturing system and have achieved good results [25].

The model combines knowledge about the intended operating procedure with measured inputs from
the normal automation sensors. The stage of the programme indicates the broad area of the fault, and
the status of the measured inputs localises the solution further. In the example shown in figure 3, a
system fault in a flexible manufacturing system (FMS) is traced:

•  In the functional tree, we first establish that the FMS has failed because of a machine tool (F11);
the tree further establishes that this is a PFZ1500 milling machine (F21); this has failed during the
machining process (F33).

•  According to the principles of operation of the machining process (P11), the highest probability
lies in a spindle failure (P21: 0.4) and that, in this case, the most likely fault is the spindle motor
(P32: 0.45).

•  The rule tree analyses the potential faults in the spindle motor and their cost weighted risk. Here
several potential faults are compared, and the most likely ones are investigated: a fault could exist
in the mechanical drive system (R211) or in the control circuit (R212). A first likely fault is a high
temperature cut out (R312) caused by a blunt tool (R421). Other likely faults are investigated in
order of probability until the fault is found.



 Figure 3: A diagnostic reasoning procedure for a machine tool [25]
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Example 2 Condition monitoring over Fieldbus with intelligent sensors

A Fieldbus network was constructed at the University of Manchester to demonstrate the use of smart
sensors in condition monitoring. A PC was programmed to act as a combined bus arbitrator and CM
controller, and another as a remote node and intelligent sensor. 50% of the Fieldbus bandwidth was
deliberately occupied by the continuous transmission of simulated time critical control variables. On
the Fieldbus between the two PC’s a field tap was provided to permit a third PC to access the Fieldbus
and transmit the data to an Ethernet link to an Internet server. The server provided world-wide real-
time access to the condition monitoring of an induction motor in the Manchester laboratories and the
functioning of the intelligent sensor as the motor’s condition was changed on line. Figure 4 shows a
schematic of the demonstrator system, and figure 5 shows the web page output.

The function of the CM controller was to implement the monitoring strategy. In overview, this
involved requesting information from the intelligent sensor, interpreting this information, and issuing
messages as necessary for consumption by the management information systems that would in reality
be present on the same network. Specifically, the monitoring strategy was defined as follows:

•  routinely request a condition status (i.e. a green, amber or red traffic light) from the intelligent
sensor;

•  if status is green, record status and time stamp, then wait 60 seconds until next status indicator
is required;

•  if status is amber, record status and time stamp, then request and record data summary, then
reduce subsequent monitoring interval to 15 seconds;

•  if status is red, record status and time stamp, then request and record full data transmission,
then reduce subsequent monitoring interval to 15 seconds and issue a warning message onto
the network for consumption by the management information systems.

There are numerous ways in which this monitoring strategy could be changed or refined. The system
demonstrated ‘on-request’ communication of condition monitoring information over a Fieldbus
network which was being used for the simultaneous transmission of time-critical data. In terms of the
intelligent sensor, the prototype included simple signal processing:

•  sensing, filtering and amplification of vibration acceleration data;
•  sampling and digitisation;
•  calculation of RMS level and frequency spectrum (FFT);
•  comparison of processed output with thresholds;
•  determination of the current status;
•  on request from the condition monitoring controller, transmission of the status, time stamp,

data summary or full FFT as necessary.

Example 3 Advanced signal processing algorithms in an intelligent sensor

Analytical techniques can accentuate condition monitoring information by manipulating the data from
measurements. In rotating and reciprocating machines it is common to use software or hardware to
convert a time series of vibration data into the frequency domain. This has limitations in non–
stationary signals because transient events are lost in the averaging. Time-frequency representations
permit the simultaneous representation of a signal's time, frequency and amplitude on a per cycle or
per revolution basis. [26]



Time-frequency methods are particularly useful in CM because many common machine faults give
rise to transient vibration or electrical symptoms which are superimposed upon a continuous periodic
waveform. The transients themselves may occur from impacting, stiffness variation around a cycle, or
asymmetric magnetic effects. With the ability to interpret the output of advanced signal processing
techniques such as these, comes the ability to incorporate them within a stand-alone microprocessor
system such as a smart sensor.

The example shown in figure 6 demonstrates the characterisation of a diesel fuel injector. Its
characteristics are hard to identify in the noisy environment of the engine when using the time domain
or frequency domain alone. In the time–frequency plot, however, it is possible to detect the timing
events, including the opening and closing of the injector needle, the onset and duration of combustion,
and the peak acceleration level, which is well correlated with the maximum pressure in the cylinder.
The time–frequency plot has sufficiently high resolution to identify faults in injection and timing.
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CONCLUSIONS AND FURTHER WORK

Data fusion is widely used by scientists of many disciplines. There are many individual examples of
successful application. There is a need, however, for a clear overall strategy with which to define and
classify the problem and hence select fusion techniques.

A picture is emerging of a flexible strategy, which incorporates a number of steps. This needs to be
refined by encapsulating expertise, from a variety of sources, which defines the patterns and
interconnection between solution steps, and matches the solution to the previously defined problem
characteristics.

Data fusion has been used in many disparate fields, and must be regarded as a superset of data
processing algorithms, parts of which are well classified and documented for particular fields and
applications. The difficult part is to generalise the strategy.

A necessary prerequisite for an engineering solution is a full statement of the problem: its definition
and classification. This enables a specification to be drawn up and a solution devised. Indeed, it is
often agreed that the problem definition is half the battle.

In data fusion, individual problems have received thorough treatments. It is not easy, however, to
approach a new data fusion problem. Even relatively experienced users of data processing methods
have difficulty selecting the best approaches, and the expertise used in such selection is far from
uniform. These issues have been characterised in the “application pull” from industrialists in the UK
Faraday INTErSECT programme [27].

Figure 5: Web page output from the demonstrator smart sensor



Figure 6: Characterisation of a diesel fuel injector from vibration and cylinder
pressure, displayed in time–frequency plots
Engine FSD425 operating at 59.7Nm and 2043 rev./min.



The limitations lie in the focus, to date, on particular advanced applications and specific techniques,
combined with the understandable reluctance to report negative results. A generic framework is
required which allows selection of best practice methods based on problem and required solution
characteristics. Details of the content of the fusion map are already established.

The knowledge of a range of academic and industrial practitioners are currently being mapped and
best practices recorded as case studies. Strengths of particular techniques and architectures will be
cross-referenced to problem characteristics, particularly in the field of condition monitoring. As an
adjunct, known hazards will also be clearly mapped. An underlying and fundamentally generic
approach will be derived.

It is the pattern and interconnection which is the subject of current work. The map and its algorithm
can be tested in three ways:

•  Demonstration of the methodology in application to already known case studies, which should
confirm some decisions but offer alternatives or even challenges to others.

•  Application of the methodology to new problem data.
•  Application of the methodology to define preferred data characteristics, i.e. use data fusion as a

part of the design process.

The last of these will be achieved by collaboration with our academic partners at the University of
Warwick, whose experience lies in the measurement of fluid flow using optical methods. The
industrial partners have a range of experience in measuring combustion progress, with a variety of
instruments. The fusion map is currently being used in the design process of in-cylinder combustion
temperature mapping measurement systems and in subsequent interpretation of the data.
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